
How to Misuse & Abuse
DORA Metrics

Bryan Finster,

Distinguished Engineer & Value Stream

Architect, Defense Unicorns

Spring22_Journal.indd 19Spring22_Journal.indd 19 5/6/22 9:21 AM5/6/22 9:21 AM

Author
Bryan Finster,
Distinguished Engineer
& Value Stream Architect,
Defense Unicorns

Bryan Finster has over two

decades of experience deliver-

ing and supporting mission-

critical solutions for very

large enterprises. He is the

founder and former lead for

the Walmart DevOps Dojo with

hands-on experience both exe-

cuting continuous delivery for

production systems and help-

ing other organizations find

and remove the constraints

that prevent a CD workflow.

He is co-author of Modern

Cybersecurity: Tales from the

Near-Distant Future, author

of the 5-Minute DevOps blog

on Medium, and a frequent

speaker on all topics related to

improving the flow of software

delivery.

20  |  HOW TO MISUSE & ABUSE DORA METRICS

My first experience looking at how to improve delivery in a large enterprise was
as one of the engineers trying to solve a practical problem. How, with no

existing automated tests and a scheduled week of twenty-four hour support after
every delivery, do we deliver changes every two weeks with a 25-million-line-
entangled monolith that we already struggle to deliver every quarter?

We decided that to make this better, we needed to solve the technical, archi-
tectural, and organizational problems to enable continuous delivery. We began
by reading Continuous Delivery by Jez Humble and Dave Farley. Then we started
the methodical process of solving the problem of “Why can’t we deliver working
changes to production every day?” We quickly realized that we needed to include
two important topics in our list of studies: effective testing in the pipeline and
methods for measuring improvement.

After solving many of these problems, we began experiencing something we
hadn’t predicted: the positive impact our work had on the teams. We built closer
partnerships with our end users because we were interacting with them daily. We
also built teams that had much higher morale and grew skills rapidly by working
daily to find ways to do the work better.

In 2017, my teammate and I gave a talk at DevOps Enterprise Summit, “Con-
tinuous Delivery: Solving the Talent Problem,” where we discussed the impact of
this work on our team and how solving this problem grew the team’s skills, morale,
and “made us love development again.”1 We found that solving the constraints to
continuous delivery and focusing on improving throughput and quality simultane-
ously were more effective tools for improving business goals than the years of failed
“Agile transformations” with scaling frameworks that had come before.

In 2018, a groundbreaking book was released: Accelerate, by Dr. Nicole Forsgren,
Jez Humble, and Gene Kim, based on years of research from DevOps Research and
Assessment (or DORA). It was the first attempt at using statistical analysis to make
correlations between organizational outcomes and ways of working. It was validating
to see that our experience wasn’t unique.

“Continuous delivery improves both delivery performance and quality, and
also helps improve culture and reduce burnout and deployment pain.”2

1	 Bryan Finster and Brent Pendergraft, “Continuous Delivery: Solving the Talent Problem -
Walmart,” San Francisco, presented at the 2017 DevOps Enterprise Summit, November 13–15,
2017, YouTube video, 27:12, https://www.youtube.com/watch?v=MHK16QNVXXU&t=6s.

2	 Nicole Forsgren, PhD, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High Performing Technology Organizations (Portland, OR: IT Rev-
olution, 2018), 56.

Spring22_Journal.indd 20Spring22_Journal.indd 20 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  21

Using several years of responses from The State of DevOps Report survey, they established a set of
signals and correlated those signals to organizational outcomes. Chapter 2, “Measuring Performance,”
contains a set of four key metrics they chose for tracking throughput and stability, because they recog-
nized these as signals that broader improvements existed in the organization.

Since that time, those four metrics have become commonly known as “DORA Metrics,” and their
usage is spreading across the industry. On one hand, this is encouraging because more companies are
starting to talk about measurable improvements to delivery rather than “Agile transformation.” How-
ever, a different problem was created.

When Accelerate was released, many of us saw it as the “easy button” for communicating what we
were trying to accomplish by measuring and working to improve continuous delivery across the enter-
prise. We purchased hundreds of copies of the book, distributed them to middle and upper manage-
ment, included an insert for why they should read the book, and pointed them to page 19, where the
four metrics were shown relative to organizational outcomes. In the process, we unintentionally com-
municated that measuring human activity was simple instead of complex, and that all we needed to do
was set these metrics as goals to measure our way to improvement.

Since then, many of us have been seeing this problem spreading across the industry. More commer-
cial tools are including DORA metrics, but the context is being lost and the promised improvements to
delivery, quality, culture, and pain are not being realized. My goal is to help correct the course on DORA
metrics usage so that every organization can see the benefits we know to be true.

DORA Metrics Explained

What are the DORA Metrics? They are a set of four metrics focused on throughput (lead time and
deploy frequency) and stability (change-fail percentage and mean time to repair).

These metrics were chosen because:

“We have found a valid, reliable way to measure software delivery performance that satisfies the
requirements we laid out. It focuses on global, system-level goals, and measures outcomes that dif-
ferent functions must collaborate in order to improve.”3

Having experienced what changes must happen in a value stream to improve throughput and sta-
bility, I concur. Everything must improve to improve throughput and stability. However, only focusing
on these metrics ignores something important. These are only leading indicators of improved business
outcomes if we deliver the right thing and do it sustainably. There are also some problems with using
these specific metrics directly in our improvement efforts. Let’s look at each in detail.

3	 Forsgren, Humble, and Kim, Accelerate, 23.

Spring22_Journal.indd 21Spring22_Journal.indd 21 5/6/22 9:21 AM5/6/22 9:21 AM

22  |  HOW TO MISUSE & ABUSE DORA METRICS

Deployment Frequency

“ . . . we settled on deployment frequency as a proxy for batch size since it is easy to measure and
typically has low variability. By ‘deployment’ we mean a software deployment to production or to
an app store.”4

This is usually the first metric people focus on. It is the easiest to measure because it can be tied
directly to delivery artifacts. If we don’t understand the intent of this metric and the reasons that smaller
batches are more desirable, then we will fail to measure and interpret the results correctly. Focusing on
this metric without quality backpressure yields results that have caused some organizations to abandon
the journey.

Lead Time

“Lead time is the time it takes to go from a customer making a request to the request being satisfied.”5

Lead time is an important indicator of how quickly we can satisfy customers and our ability to get
feedback on the value hypothesis we are making. What we are delivering is probably wrong in some way,
so we need to find out quickly, fail small, and adjust.

“ . . . there are two parts to lead time: the time it takes to design and validate a product or feature, and
the time to deliver the feature to customers.”6

For the sake of extracting some meaningful data, the part of lead time during which we decide if
something should go on the backlog or gather more user data was not measured. They focused on the
delivery portion to limit their variables in the data. They give two different definitions for the delivery
portion. First:

“ . . . the delivery part of the lead time — the time it takes for work to be implemented, tested, and
delivered…”7

This is the development cycle time—the time from when work begins until it is delivered. This por-
tion gives us some good insight into where we should look for improvement opportunities. This isn’t
what was measured though. Remember that their goal was finding correlations, not improving them.

4	 Forsgren, Humble, and Kim, Accelerate, 16.
5	 Forsgren, Humble, and Kim, Accelerate, 14.
6	 Forsgren, Humble, and Kim, Accelerate, 14.
7	 Forsgren, Humble, and Kim, Accelerate, 14.

Spring22_Journal.indd 22Spring22_Journal.indd 22 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  23

The “lead time” values they show are based on the definition they used for the survey question.

“We measured product delivery lead time as the time it takes to go from code committed to code
successfully running in production . . . ”8

 The delivery cycle time is only the portion of the development cycle time that covers the CD pipe-
line. The reason they looked at this cycle time is that it isn’t dependent on the size of the task. High-
performing teams will focus on reducing the delivery cycle time to improve the efficiency of their quality
gates to improve their confidence that they can deliver. A short cycle time here indicates a mature deliv-
ery process. However, the reason they measured this is different from what we need the metrics to tell
us. We are working on reducing the batch size of work, not statistical analysis. We will need to keep an
eye on this as part of improving our development cycle time, but it’s only one of the problems to look at.

Change-Fail Percentage

“We asked respondents what percentage of changes for the primary application or service they
work on either result in degraded service or subsequently require remediation (e.g., lead to service
impairment or outage, require a hotfix, a rollback, a fix-forward, or a patch).”9

Why measure this?

“In the context of Lean, this is the same as percent complete and accurate for the product delivery
process, and is a key quality metric.”10

Smaller batches and shorter lead times are pointless if we are delivering broken solutions. Asking
respondents to estimate how many changes require remediation makes sense in the context of a survey.
“About 20% of the time, we’ll deliver something and it breaks in some way.” For our purposes, which
change caused a defect does not meet our improvement goal. Our goal is to improve the “percent com-
plete and accurate” by reducing the number of defects we create, not identifying which deliveries cause
defects.

Mean Time To Restore
In a world of complex cloud environments, failure is not just an option, it’s a promise. Improving uptime
is important, but improving how we react to failure is more important. To measure MTTR (mean time
to restore), they did the following:

8	 Forsgren, Humble, and Kim, Accelerate, 15.
9	 Forsgren, Humble, and Kim, Accelerate, 17.
10	 Forsgren, Humble, and Kim, Accelerate, 17.

Spring22_Journal.indd 23Spring22_Journal.indd 23 5/6/22 9:21 AM5/6/22 9:21 AM

24  |  HOW TO MISUSE & ABUSE DORA METRICS

“We asked respondents how long it generally takes to restore service for the primary application or
service they work on when a service incident (e.g., unplanned outage, service impairment) occurs.”11

As a survey question where people are estimating their outcomes, this works fine. The challenge for
using this as part of an improvement plan is how to measure it in reality.

Metrics Run Amok

We’ve covered the DORA metrics, their intent, and how they do and do not apply as tools for measuring
improvement. The Accelerate authors’ goal was a statistical analysis of behaviors that high- and low-
performing organizations exhibit, not to use these metrics to improve those results. We need to make
sure we define our goals to ensure the metrics we choose align with the goals. What happens when we
don’t?

Making the right metrics visible in the right way for the right reasons is a core part of any improve-
ment process. Measuring the performance of software delivery has gone through many iterations over
the years with generally poor results. The typical pattern has been to find metrics that appear to make
sense and then to use the metrics inappropriately. An example of this is velocity.

Velocity is the number of story points completed in a defined timeframe. When velocity is properly
used, a team can plan workflow based on capacity. However, it is frequently misused and abused as a
performance metric with goals. “We need your team to increase its velocity!” No problem. Increase the
story points every sprint. We lose the ability to track our capacity and plan, but the person demanding
we make the metric “better” is happy. We need to understand the intent of a metric and the possible
consequences of measuring it to prevent misuse and perverse incentives.

I mentioned the problem we created when we accidentally implied that measuring behavior was
simple and we could just measure our way to improvement when we pointed people to Table 2.3 in
Accelerate. The outcome is a set of common misuses of these metrics spreading across the industry.

Focusing on Speed
“We need to deliver features faster. Deliver more frequently so we can be high-performing.” Deploy-
ment frequency is about batch size, not speed. Smaller batches of work correlate with higher quality
and improved value delivery with less waste. If we focus on speed, quality will inevitably suffer. If we
focus on smaller batches and improved quality processes, speed will increase. No matter what, mea-
suring deployment frequency without using quality metrics as guardrails will result in poor outcomes.
We see this happen, and it causes organizations to abandon CD and return to delivery flows that will
never be agile.

11	 Forsgren, Humble, and Kim, Accelerate, 17.

Spring22_Journal.indd 24Spring22_Journal.indd 24 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  25

Moving the Goalpost
“We produced ten releasable changes this week. We are high-performing!” Were they delivered as ten
separate artifacts? One big release? Were they delivered at all? This isn’t a vanity metric. The point is to
reduce the size of the batches we deliver as a method for improving how we work, not what we could
have delivered. Undelivered change is only waste.

Goal Setting
“Here are your DORA metric OKRs for the quarter.” The goal isn’t better DORA metrics. The goal is to
improve our ability to deliver the right thing sustainably with lower cost, higher throughput, and more
stability. OKRs (objectives and key results) should be focused on our desired business outcomes. If we
are only focusing on DORA metrics, it’s similar to driving a car with the goal of acceleration. Accelerat-
ing to where? Do we care if the engine explodes?

Measuring Our Way To Enterprise Transformation
Leaving aside the fact that we should be continuously improving instead of running “transformations,”
DORA metrics won’t get us there. They inform us about one aspect of improvement, they don’t fix
things. If we simply get a dashboard and do not buy into using it to identify improvement items, then
nothing will get better. Also, if we lack the right culture, the metrics will only cause fear, not improve-
ment. We need to communicate the intent frequently and openly and build the level of trust required to
improve our organization. If we have the right culture, there are some leading indicators we can gamify
to help spread information. This point will be elaborated on later.

Vanity Metrics
Many tools are now including DORA metrics dashboards because customers are demanding observ-
ability. However, these dashboards can become problems. Aside from the fact that each is interpreting
the meaning of the metrics differently, they are often used as “vanity radiators” instead of information
we can use to help us improve. The following example, is a mockup of a DORA dashboard I’ve seen used.

Figure 1: DORA Metrics Dashboard Example

Deploys

437

Change
Fail %MTTRLead Time

3
hours

5
hours

8%

TEAM 1 TEAM 2

Deploys

645

Change
Fail %MTTRLead Time

2.3
hours

2
hours

10%

Spring22_Journal.indd 25Spring22_Journal.indd 25 5/6/22 9:21 AM5/6/22 9:21 AM

26  |  HOW TO MISUSE & ABUSE DORA METRICS

This exemplifies the growing problem. First, it focuses most attention on deployments while giving
no useful indication of whether things are getting better. Are we improving at reducing batch size and
quality? The message “Look how often we deliver!” is not useful either for the team or for those want-
ing to help teams. It also encourages comparing teams against each other instead of teams comparing
themselves against their past selves. The most useful information we get from this is that Team 2 may be
using a hotfix process outside of their normal flow to resolve incidents—a big red flag. These may make
the organization feel good, but they don’t help our goals.

If our goals are misaligned or we do not communicate intent clearly, we can create unintended
consequences that actually make things worse. We need to continuously compare the behaviors we are
seeing with our intended behaviors and not just look at dashboards to understand if the organization is
improving. We need a plan to keep things on track.

Tools for Improvement

So, how can we avoid using metrics destructively? We need to make sure we understand and clearly
communicate our goals. We want to find and remove technical, process, and organizational constraints
to continuous delivery because solving these problems “...improves both delivery performance and qual-
ity, and also helps improve culture and reduce burnout and deployment pain.”12 We also need to make
sure that everyone understands that these metrics are tools for the teams to use to help self-improve, not
indications of performance or badges of achievement. This needs to be clearly and frequently commu-
nicated. Using metrics correctly requires education.

Reduce Batch Size
We need to reduce batch size because smaller batches of work are easier to verify, they tend to fail small,
we are less likely to suffer from sunk-cost fallacy, we amplify feedback loops, etc. How small should they
be? As small as we can make them so we can get production feedback on what we are trying to learn.
Working to reduce batch size acts as a forcing function for exposing and removing hidden waste in
upstream processes. There are several batch sizes we are trying to reduce.

Deployment Frequency
There are two common arguments I hear against increasing deployment frequency.

The first is a misunderstanding of “valuable.” “We don’t want to deliver incomplete features,
because the customer can’t use them, so we aren’t delivering any value.” There are more stakeholders
expecting value than just the end user. One of those is the product team. We are reducing the level of
inventory waste in our flow and getting rapid feedback that we haven’t broken existing behaviors with

12	 Forsgren, Humble, and Kim, Accelerate, 56.

Spring22_Journal.indd 26Spring22_Journal.indd 26 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  27

the new change. This gives us feedback on our quality gates and also lowers the risks of delivering a
production fix.

The second objection is, “Our customers don’t want changes that frequently.” This comes from a
misunderstanding of what CD is for. Yes, we can deliver features with continuous delivery. Notice that
one of the four key metrics is MTTR and not the number of features delivered. A primary purpose of
CD is production support. When production has an incident or we have a new zero-day vulnerability,
they want changes that frequently to resolve those problems. Can we resolve them? By improving deliv-
ery frequency, we are continuously verifying that we can still deliver those fixes safely.

To measure this, we can start by using our workflow management tool. However, we need a com-
mon definition of “done” that includes “delivered to the end user” and not the measurement of some
intermediate step like “ready for someone else to do something with it.” However, if workflow metrics
haven’t been visible before, tool usage is usually inconsistent. (We’ll explore this problem more with lead
time.) A better solution is to measure delivery directly by instrumenting the tools we deliver with. There
are a growing number of commercial and open-source tools for this.

After we make this visible, we can monitor our trends over time. Note that relentless improvement
is the goal, not becoming an elite team. We want to reduce the batch size, but we also don’t want to
over-optimize this at the expense of the rest of the flow. We should note that only measuring the rate of
deploying change is insufficient for decreasing the inventory of work in progress. Incomplete work can
be deployed but hidden by configuration. This metric can give us insights, but we still need to educate
everyone on the intent to keep batch sizes low.

Again, this is not a performance metric, and attempting to set a standard target value for all teams is
a mistake. It is also not an indicator of how awesome the team is. This is like a speedometer that we can
use to decide if the current value makes sense in our local context rather than a lap-timer to see if we
are the winners. Every team will have its own delivery context and will eventually level out at a cadence
that makes sense in that context. That being said, we shouldn’t pat ourselves on the back for being high-
performing because our organization of a hundred teams deploys to production once a day. That’s only
one delivery per quarter per team. Those are not small batches. Can we deliver today’s changes today? If
not, we have more work to do.

Lead Time

“Shorter product delivery lead times are better since they enable faster feedback on what we are
building and allow us to course-correct more rapidly.”13

The term “lead time” can cause confusion when it’s used to describe a subset of the total lead time.
In Lean, the lead time is the time from request to delivery. There are many steps with nested cycle times

13	 Forsgren, Humble, and Kim, Accelerate, 15.

Spring22_Journal.indd 27Spring22_Journal.indd 27 5/6/22 9:21 AM5/6/22 9:21 AM

28  |  HOW TO MISUSE & ABUSE DORA METRICS

within the total lead time. Ubiquitous language is important for communicating clearly, after all. I rec-
ommend being more specific when defining terms for the organization. We can see these cycle time
relationships in Figure 2, and all of them impact batch size.

Figure 2: Cycle Time Relationaships
(This image is provided under a creative commons license: CC BY 4.0 - Bryan Finster - Commercial use with attribution.)

Delivery Cycle Time
Delivery cycle time was surveyed for Accelerate—the time from code commit until delivery to produc-
tion. We need a shared understanding of the delivery pipeline to measure this correctly. The delivery
pipeline consists of every manual or automated quality process that is executed after a change is commit-
ted to version control until the change is delivered to production. The purpose is to make every change
prove it meets the organization’s definition of production-worthy. Tracking pipeline cycle time acts as
a forcing function to improve how efficient our quality process is and to automate manual steps. This
helps us reduce the cost of delivery to enable us to deliver the small batches we want.

If we are using any method to deliver changes other than our defined pipeline, then we need to pri-
oritize improvements to fix this anti-pattern. One of the reasons CD reduces burnout is that when we
need something fixed immediately, we can confidently do that because we are not bypassing all of our
quality and security checks. Our delivery pipeline must be the safest, most secure, and fastest method
for delivering production fixes.

Continuous Integration
“That’s not a DORA metric!” No? It’s not listed in the chapter on measuring performance, but the goal of
that chapter wasn’t to track our performance efforts. However, in Chapter 4 on recommended technical
practices, the authors define CI behavior and how to measure it.

Development Cycle Time

Delivery Cycle Time

Refine Work Development End UserProduction DeployDelivery Pipeline

Lead Time

Decompose into acceptance tests

Decompose into acceptance tests

Build, apply quality gates, & deploy

Release

Spring22_Journal.indd 28Spring22_Journal.indd 28 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  29

“Following our principle of working in small batches and building quality in, high-performing
teams keep branches short-lived (less than one day’s work) and integrate them into trunk/master
frequently. Each change triggers a build process that includes running unit tests. If any part of this
process fails, developers fix it immediately.”14

Continuous integration metrics are leading indicators for DORA’s four key metrics. They are also
easier to automate and come with recommended time boxes. During the first experience I had working
to solve the CD problem, we posted the rules for CI in our team area and used them to drive our retro-
spectives until we found solutions for them.

•	 Work integrates to the trunk at a minimum daily.
•	 Work has automated testing before merging to trunk.
•	 Work is tested with other work automatically after merging to the trunk.
•	 All feature work stops when the build is red.
•	 New work does not break delivered work.
•	 Trunk is always deployable.

Solving these problems to execute CI is the foundation of the efforts to improve the organization.
It is very effective at exposing gaps in testing, evolutionary coding practices, trunk-based development,
work decomposition, and teamwork. It’s also effective at shining a light on upstream issues. We’ll see
this relationship later.

We have two metrics to track: frequency of changes integrated into the trunk and duration of
branches from the trunk. It is important that we measure using the trunk of version control; the place
where production releases come from.

Because the definition of CI contains a hard timebox (branches removed in less than a day) with
a smaller timebox (trunk integration frequency) nested within, and because CI is not contextual to an
application but is simply a high-performing workflow, we can provide direct feedback to help teams
identify issues by gamifying some of the signals and providing tips that work in every context.

Development Cycle Time
This is the time from when work starts on something that changes the behavior of the application and
the time it is delivered to the end user. “That’s not a DORA metric!” I’d again refer you to Chapter 4,
“Work in Small Batches.”

How small is small? It’s typical for teams who have only been taught Scrum to refine work until
it can fit in the sprint. Therefore, five- to ten-day stories are common. It’s also common for those to
take ten to fifteen days to actually finish development due to the lack of clarity in the stories. Because
the desired outcomes are unclear, exploratory coding is also common. This leads to creating tests after

14	 Forsgren, Humble, and Kim, Accelerate, 44.

Spring22_Journal.indd 29Spring22_Journal.indd 29 5/6/22 9:21 AM5/6/22 9:21 AM

30  |  HOW TO MISUSE & ABUSE DORA METRICS

development is complete. These problems all prevent CI from functioning. To resolve this, we shrink the
timebox for a story then fix everything that prevents us from staying within that time box.

In 2012, Paul Hammant, author of Trunk-Based Development and Branch by Abstraction, made the
following suggestion:

“Story sizes should average as close to one day as possible. If they don’t, your Agile project is going
to be harder for nearly everyone involved. If your average is significantly greater than that one day,
then change something until you get there.”15

This may sound unachievable, but we have seen how effective this is in the enterprise Dojos. Dojos
work with teams to help them discover better ways of delivering in their context. A primary tool for
doing this is the hyper-sprint. A hyper-sprint lasts for 2.5 days and includes every activity required to
deliver small changes, get feedback, and adjust.

This short time box forces a mind shift to change perspective on what defines “small.” This also acts
as a forcing function for uncovering and removing upstream impediments with missing product infor-
mation, external hard dependencies with other teams, Change Advisory Board compliance theater, or
other organizational issues.

Continuous integration is hard to achieve if teams do not have the skills to slice stories into thinner
value increments with testable acceptance criteria and deliver them as a team. This skill set is our highest
priority.

Build Quality In
Reducing our batch size is one aspect of increasing efficiency. However, if all we do is break things down
into small pieces and shove them out as rapidly as possible, quality will suffer. We need guardrails.

Defect Rate
DORA asked respondents to report their change-fail percentage. As we discussed earlier, this is a good
question for comparing organizations based on a survey, but it isn’t the best for trying to measure as
part of our improvement process. It requires identifying which release caused a specific defect. How-
ever, defects are more complicated than that, and spending the effort to find which release caused which
defect generates complexity without adding offsetting value to our goal.

We need to track the rate at which defects are created. If we are improving our quality process, we
should expect the number of defects created over time to decrease even as we maintain or improve our
delivery frequency. It is important that we do not focus on this in isolation. It needs to be tracked con-
currently with delivery frequency, CI metrics, and the other batch-size metrics. Grouping these metrics

15	 Paul Hammant, “Call to Arms: Average Story Sizes of One Day,” Paul Hammant’s Blog, April 24, 2012,
https://paulhammant.com/2012/04/24/call-to-arms-average-story-sizes-of-one-day/.

Spring22_Journal.indd 30Spring22_Journal.indd 30 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  31

prevents us from using quality processes that increase batch size or reduce batch-size at the expense of
quality. We are forced to find solutions to both that make us better as an organization.

MTTR
MTTR is the most problematic of the four DORA metrics to measure at the team level. Tracking at the
product level is relatively easy if there is a disciplined approach to tracking customer-facing incidents
and capturing the time from detection until customer impact is resolved. However, this is usually done
by humans updating an incident tracking tool, so accuracy depends on standardizing practices and exe-
cuting with discipline. To get more finely-grained data that specific teams can review and improve at the
service level requires that each team instrument their components to track failure. This will take time,
but operational observability is always worth the investment.

This is another lagging indicator and an important forcing function for improving our standard
delivery process so that we can use it to respond quickly to incidents, security issues, or any other emer-
gency in production. If we are celebrating a low MTTR while also using nonstandard, hacky, hot-fix
processes when an emergency happens, then we are misunderstanding the purpose of this metric.

Not Just Robots
Continuous delivery is a holistic process of taking product ideas, decomposing them into small incre-
ments of value hypotheses, delivering them to the end user with a heavily automated standard process,
and getting feedback to inform future plans. We need a view into every aspect of the flow to improve it.
(See Figure 3.)

Figure 3: CD Flow Example
(This image is provided under a creative commons license:CC BY 4.0 - Bryan Finster - Commercial use with attribution)

PRODUCT
IDEAS Continuous

Delivery

ENDUSER

Feature

TaskTask
Story

Story

Feature CI Acceptance
Tests

Feature

Feedback loop

Dev Team Robots

PO + Dev Team

Spring22_Journal.indd 31Spring22_Journal.indd 31 5/6/22 9:21 AM5/6/22 9:21 AM

32  |  HOW TO MISUSE & ABUSE DORA METRICS

Radiate the Information
If a metric is collected and no one looks at it, does it exist? We need information radiators that display
the information in a way that causes an impact. Looking at the dashboard, we should have some idea
about what action to take based on the current state. Also, we need to make some decisions about the
insights we want. Ultimately we are trying to help our teams identify and remove constraints.

While tracking metrics at the product level may give us planning insights, to improve flow we need
to help teams remove friction. So, we need to measure at the team level whenever possible. The team
level is also the lowest common denominator. Avoid falling into the trap that development metrics can
be used to track individual productivity. It’s destructive to measure individuals; they will be incentivized
to focus on personal output rather than team outcomes.

Gamifying Improvement
If we have a culture of high trust, learning, and continuous improvement, then deliberate gamification
can be a powerful force multiplier for improvement efforts. Metrics, like deployment frequency, will be
contextual to the application. For example, if we are delivering to the cloud, we can deliver much more
quickly than if we are delivering to a submarine that won’t surface until a month from now. The cadence
will also be dependent on how much control teams have. Some metrics are not contextual. Code inte-
gration frequency, branch duration, and development cycle time are examples. The product team has
full control over these, and working to improve these is effective at uncovering impediments. For these,
we can visualize trends in ways that encourage improvement (see Figure 4).

Figure 4: Example of Platform One’s Holocron Delivery Dashboard

CONTINUOUS INTEGRATION

Last updated: Upcoming Feature

196%

Nov 2
2

Dec
 13

Ja
n 0

3

Ja
n 2

4

100%
100% Cl

0%

Spring22_Journal.indd 32Spring22_Journal.indd 32 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  33

In Figure 4, we have an example from Platform One’s Holocron delivery dashboard. We can see
week-to-week trends of how frequently code is integrated into the trunk compared to the team’s size and
the definition of continuous integration above.

The “100%” line shows the minimum level of change to qualify for CI and tells us if we are improv-
ing or performing worse as a team over time. A word of caution though: This is a team-focused metric.
Only the team understands the context and why the numbers are the way they are. Was there a holiday
or people on vacation or sick? Using team-focused metrics outside the team will harm the value of the
metric.

Showing where we are and where we want to go is only helpful if we have some idea of how to get
there. Providing information co-located to the tool means we can implement on-demand help. Figure 5
is an example of help content for the CI metric to help teams self-discover effective tips.

GOAL OF MEASURING

Reduce the size of change: Smaller changes improve the effectiveness of code review, give faster quality

feedback, and reduce chances of defects introduced during change conflict resolution.

Improve work decomposition: Solving the problem of how to deliver smaller changes uncovers issues with

work decomposition. Solving the problem of work decomposition improves the quality of the requirements.

TIPS FOR IMPROVEMENT

Use a Continuous Integration workflow

Use Behavior Driven Development to decompose and better understand the work.

Use Test Driven Development to guide smaller changes and better application architecture.

Use feature flags, branch by abstraction, or other techniques to separate deployment from release.

Figure 5: Help Content for the CI Metric

Here the tool can guide teams to know good content and suggestions rather than forcing each team
on a path of discovery and hoping each finds good information.

Gamification can be an effective tool to help jump-start improvement. It cannot be the only strategy
but should be seen as one more tool in the kit. It helps the early and middle adopters as long as there is
no sense that the metrics are being used to judge team performance. Over communicating the intent
and walking the talk is required.

Guardrail Metrics
Deliberate gamification can be an effective aid to help us scale improvement. However, as soon as we
measure any human activity and make those results visible, we’ve gamified the system—we just may not

Spring22_Journal.indd 33Spring22_Journal.indd 33 5/6/22 9:21 AM5/6/22 9:21 AM

34  |  HOW TO MISUSE & ABUSE DORA METRICS

be doing it deliberately. We need to be aware of that. We shouldn’t measure any human activity without
a tester’s mindset. “What could possibly go wrong? How can we inspect that anything has?”

For example, if we measure defect rates, the natural behavior is to aim for zero defects and to add
layers of verification steps to achieve this. Something fails, add more verification steps. This is good
until it isn’t. When the verification steps begin adding too much time or require too much effort, then
other metrics will suffer. It will take us longer to deliver fixes using our standard process, and we cannot
deliver change as frequently. We need to combine the defect rate with delivery frequency and delivery
cycle time. If we are working to improve one, the others will tell us when we are headed in the wrong
direction. Metrics are only signals about our goals, after all. They do not stand alone.

Investment Is Required
I should be clear—teams are delivering the best they can in their current environment. We cannot expect
teams to improve flow unless their environment improves, and part of that improvement is investing in
their success. Tools help, but more important is training teams on the teamwork and practices required
to become more effective in their context. Additionally, are teams incentivized to behave as teams? Are
we focusing on individual achievement or team outcomes? Growing stable teams that are focused on
how to best deliver the capabilities they own is a critical investment in our future success.

Only the Tip of the Iceberg

The four key metrics DORA used to correlate behaviors of high-performing organizations are a small
subset of the metrics recommended in the book Accelerate. They also represent only one aspect of the
health of the system: the outcomes of improving our quality processes and removing waste. This improve-
ment of efficiency is important, because we cannot be high-performing otherwise. It’s relatively easy to
measure efficiency, and things that are easy to measure are where most people will focus their attention.
Too much focus on one signal will hurt our goals. We need balanced signals to guard against that.

Effectiveness
Are our customers happy? Are we improving our bottom line? Are we achieving the broader strategy of
our organization? If we drive efficiency and these aren’t true, then we will efficiently go bankrupt.

Customer Outcomes
Integrating code frequently, delivering it frequently, and verifying that it matches our requirements
doesn’t matter if it’s not actually useful to the end user. Do they like what we are delivering? Are they
using it? Is it stable and available? The four key metrics track how efficiently we can deliver and the
effectiveness of some of our quality processes but tell us nothing about the effectiveness of the ideas we
are delivering. Only customer-focused metrics can do that.

Spring22_Journal.indd 34Spring22_Journal.indd 34 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  35

Objectives and Key Results (OKRs)
OKRs track our progress toward business goals for long-, medium-, and short-term objectives. If we
have no goals and no objective to achieve them, why bother becoming more efficient?

Sustainability
Is the cost of keeping customers happy higher than we can afford? What about our organization’s health?
Can we sustainably deliver at the pace we’ve set without burning people out? It is relatively easy to
become more efficient, do it effectively, and have our signals hide the fact that people are working long
hours, after hours, and on weekends to do it. Measuring and preventing this acts to make sure our effi-
ciency metrics are telling the truth.

Flow
If it takes us too long to convert an idea or a customer request into delivered work, then the work may
be irrelevant when we deliver. By tracking total lead time and mapping where that time is spent, we
can uncover larger organizational constraints we can improve. By keeping our WIP (work in progress)
under control, we can minimize defects and delays caused by context switching and place focus on get-
ting the highest priority thing done.

Culture
We need indicators for our organizational culture. It’s easy to get false improvement signals from flow,
CD, and CI metrics by simply encouraging people to work in unsustainable ways that burn them out.
We need to track feedback from the teams. How many deliveries are made after hours? How many
extra hours are being worked? What about turnover? Westrum surveys are also highly recommended.
To achieve actual improvement we need to be more efficient, more effective, and do it sustainably with
happier coworkers. Establishing the right culture is important before we attempt to use metrics as part
of our improvement process.

Trust is the first impediment to overcome. If we lack organizational trust, then any improvement
efforts will stall. Trying to improve things means trying to do new things that may not work as we
expected. If we lack trust, then trying new things is risky. If we have trust, then we feel free to propose
new ideas or “pull the Andon cord” when we are seeing things going wrong. Don’t assume trust. We
need to intentionally instill it and get feedback on how comfortable people are to try.

All of the metrics rest on a foundation of a shared mission. We discussed how being more efficient is
pointless if we are delivering the wrong things. However, how do we know what the right things are?
Our organization should have a clear purpose. What is our North Star? Our goals and OKRs should be
aligned to that North Star. Every day, everyone should be able to tie their current work to that shared
mission and understand the value they are adding.

If we have trust and a shared mission, then we need to make sure we foster a culture of learning
and improving. By using our daily work and improving how we do our daily work, we are continuously

Spring22_Journal.indd 35Spring22_Journal.indd 35 5/6/22 9:21 AM5/6/22 9:21 AM

36  |  HOW TO MISUSE & ABUSE DORA METRICS

learning and coming up with better ideas. This prevents the stagnation that will eventually make our
organization irrelevant. We should never be doing it the way we were before.

Figure 6: Measurable Goals to Help Drive Improvement
(This image is provided under a creative commons license:CC BY 4.0 - Bryan Finster - Commercial use with attribution)

Conclusion

DORA’s study of how organizations behave relative to their outcomes is an important work. We should
not, however, confuse the metrics we need to use to monitor our improvement efforts with the purpose
behind DORA’s four key metrics and attempt to use those four metrics as yet another silver-bullet trans-
formation framework.

Improving throughput and stability is the engine for organizational improvement. We
need to measure this with a balanced set of metrics that prevent unintended outcomes, and
we must continuously inspect and adapt to ensure we are on track.

We need to keep metrics visible and part of the conversation, but we must also invest in
educating everyone on what the metrics are telling us and how to respond. We should not

CULTURE

Trust • M
issio

n • Learning
 • Im

p
ro

ving

Lo
w

H
ig

h
D

A
TA

 FID
E

LITY

Business Goals, Customer Value, and Sustainability
Profitable, happy customers, happy teams

Business Objectives
Key results

Flow
WIP, lead time, development cycle time, throughput, flow efficiency

Continuous Delivery
Deploy frequency, pipeline cycle time, defect rate, MTTR

Continuous Integration
Code integration frequency, branch duration

Spring22_Journal.indd 36Spring22_Journal.indd 36 5/6/22 9:21 AM5/6/22 9:21 AM

THE DEVOPS ENTERPRISE JOURNAL SPRING 2022  |  37

unleash a dashboard and assume it will be used appropriately. Good intent is insufficient
to prevent the damage that will occur. We also need to make sure that we are measuring at
the right granularity.

Measuring the behaviors of individuals will lead to people acting as individuals. It
requires teamwork to be high-performing.

We should never use delivery metrics to compare teams. Those metrics are the team’s
metrics, and each team has its own context. We need to establish a culture of improvement
as an expected business deliverable along with any other feature and provide teams with the
observability and training they need to deliver that feature.

Product development is a complex interaction of people, processes, and products. There
are no simple metrics. Measuring any human activity is complex, not simple. The act of
measuring changes the outcomes. We need to be mindful when we use these tools. We also
need to be aware that we cannot measure our way to improvement. We use these tools to
monitor and inform the next improvement experiment.

Measure the process, not people. Invest in providing the help people need to improve the
process and outcomes. People are our most valuable asset.

Spring22_Journal.indd 37Spring22_Journal.indd 37 5/6/22 9:21 AM5/6/22 9:21 AM

